Diretoria de Tecnologia e Inovação

Sensor de Distância AUL

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

Produção de Conteúdo

Andrea da Silva Castagini Padilha Cleiton Rosa Simone Sinara de Souza

Revisão Textual

Adilson Carlos Batista

Projeto Gráfico e Diagramação

Edna do Rocio Becker

2021

Este trabalho está licenciado com uma Licença Creative Commons Atribuição NãoComercial - Compartilhalgual 4.0 Internacional

Sumário

Introdução	2
Objetivos desta Aula	2
Competências Gerais Previstas na BNCC	3
Habilidades do Século XXI a Serem Desenvolvidas	4
Lista de Materiais	4
Roteiro da Aula	5
1. Contextualização	5
2. Montagem e Programação	7
3. Feedback e Finalização	12
Videotutorial	14

AULA 34 Sensor de Distância

O termo sensor refere-se a dispositivo capaz de detectar e responder, através de sinais, estímulos de natureza física ou química. Em aulas anteriores deste módulo, conhecemos alguns modelos de sensores capazes de determinar a temperatura, a luminosidade e a presença de obstáculos.

Nesta aula, conheceremos, por meio de programação, o funcionamento do sensor de distância ultrassônico HC-SR04.

- Conhecer o sensor de distância ultrassônico modelo HC-SR04;
- Entender o funcionamento do sensor de distância ultrassônico;
- Programar o sensor de distância ultrassônico com a placa Arduino.

Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens – verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital –, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

Robótica

Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação.

- 01 Placa Protoboard;
- 01 Placa Arduino Uno R3;
- 01 Cabo USB;
- 04 Jumpers Macho-Macho;
- 01 Sensor de Distância Ultrassônico HC-SR04;
- 01 Notebook;
- Software Arduino IDE ou mBlock.

1. Contextualização (15min):

Você já ouviu o termo ecolocalização? Ou biossonar? Este termo é utilizado para descrever o processo de emissão de ondas ultrassônicas realizadas por alguns animais, como baleias, golfinhos e morcegos, através das quais conseguem detectar obstáculos ou presas. O som emitido por esses animais atua como um sensor de distância, que se propaga e, quando encontra uma presa ou objeto, o sinal retorna ao animal indicando a distância entre ele e o obstáculo. O cálculo da distância é baseado no intervalo de tempo de propagação e recepção do som pelo animal.

Os sensores de distância, também, são utilizados em navios para detectar e localizar, através de ondas sonoras, obstáculos submersos na água. Neste caso, o cálculo da distância sofre influência de fatores, como temperatura, salinidade e pressão da água.

Outro exemplo da utilização dos sensores de distância são os presentes na marcha ré de alguns carros, que avisam o condutor que o automóvel está se aproximando de algum obstáculo. Mas como funcionam estes sensores de distância? Que estruturas possuem capazes de detectar, através do envio e retorno de sinais ultrassônicos, a presença de obstáculos?

Para responder esses questionamentos, vamos analisar o sensor de distância ultrassônico HC-SR04.

Este modelo de sensor de distância possui dois alto-falantes, um é responsável por emitir o pulso ultrassônico e o outro em captar o retorno deste pulso, além de quatro pinos utilizados na medição da distância, sendo eles: Vcc, Trig, Echo e GND, como mostra a figura 1.

Figura 1 - Estrutura do sensor de distância ultrassônico HC-SR04

O funcionamento do sensor ocorre da seguinte maneira: o pulso ultrassônico é ativado através do pino Trig e percorre uma determinada trajetória até encontrar um obstáculo. Ao bater no obstáculo, o pulso ultrassônico é refletido e volta ao sensor onde a leitura é realizada através do pino Echo. Com base no tempo percorrido pelo pulso até o obstáculo e deste ao sensor é possível calcular a distância entre um e outro (figura 2). Este modelo de sensor permite a leitura de distâncias entre 2cm e 4m, com precisão de 3mm. Na robótica, este sensor é utilizado, por exemplo, para desviar robôs de obstáculos, acionar alarmes ou portas de microcontrolador, entre outros.

2. Montagem e Programação (60min):

Vamos começar com a montagem dos componentes eletrônicos. Encaixe o sensor ultrassônico na placa Protoboard, utilizando uma coluna de furos para cada pino do sensor, conforme indicado na figura 3.

Robótica

Agora, utilizando 2 jumpers Macho-Macho, interligue os pinos GND e 5V do Arduino com os pinos GND e Vcc, respectivamente, do Sensor Ultrassônico, conforme indicado na figura 4.

Por fim, utilizando mais 2 jumpers Macho-Macho, conecte as portas digitais 2 e 3 da placa Arduino com os pinos Trig e Echo do sensor ultrassônico, como mostra a figura 5.

Com os componentes eletrônicos montados, vamos programar, por codificação e por blocos, o sensor de distância ultrassônico.

i. Linguagem de programação por código

Para esta programação, será necessário instalar a biblioteca Ultrasonic no Software Arduino IDE (caso não esteja instalada, consulte a **Aula 05 - Softwares Arduino IDE e mBlock**).

Uma vez instalada a biblioteca, conecte a placa Arduino ao computador, através de um cabo USB, para que ocorra a comunicação entre a placa microcontroladora e o software Arduino IDE.

No software IDE, escreva ou copie e cole o código-fonte de programação, conforme apresentado no quadro 1:

```
Quadro 1 - Código-fonte da programação na linguagem do Arduino (Wiring)
/* Programa: Sensor de distância HC */
/* Inclui a biblioteca do sensor */
#include <Ultrasonic.h>
/* Define os pinos para o sensor */
int pino_Trig = 2;
int pino Echo = 3;
/* Especifica o nome e os pinos para o sensor */
Ultrasonic Sensor(pino Trig, pino Echo);
/* Variável que armazenará as medidas. */
int distancia;
void setup() {
 /* Inicializa a comunicação serial */
 Serial.begin(9600);
}
void loop() {
 /* Realiza a medição e armazena na variável "distancia"
* /
 distancia = Sensor.read();
 /* Imprime no Monitor Serial os valores das medidas a
cada 0,5 segundos */
 Serial.print("Distância: ");
 Serial.print(distancia);
 Serial.println("cm");
 delay(500);
}
```


Robótica

A seguir, compile o programa pressionando o botão **Verify** (botão com sinal de tique) para verificar se não há erros de sintaxe. Estando o código correto, o próximo passo é realizar a transferência do programa para o Arduino. Pressione o botão **Upload** (botão com uma seta apontando para a direita), para realizar upload do programa para o Arduino.

Após a transferência do programa para o Arduino, o sensor ultrassônico, presente na Protoboard, realizará a medição da distância dos obstáculos presentes a sua frente.

Para visualizar essas medidas, foram colocadas no código (quadro 1) instruções para que o Arduino as envie para o notebook, via comunicação serial, através do cabo USB. Você poderá acompanhar essas medidas enquanto o Arduino estiver ligado. Dica: abra o Monitor Serial utilizando o atalho do Software Arduino IDE pressionando "Ctrl+Shift+M" em seu teclado.

Vale destacar que para as informações do sensor ser apresentadas corretamente na tela, é necessário configurar a velocidade de comunicação, na janela do Monitor Serial, localizada na parte inferior da janela (figura 6), igual à velocidade informada no código, na função setup, ou seja, 9600 baud.

censor_de_distancia Arduino 13.13
Anguivo Editar Sketch Ferramentas Ajuda
V 🖸 🗈 🖸 Montor serial 🖗
sensor_de_distancia
// Programa: Sensor de distância HC
// Inclui a bibliorees do sensor
finclude <01tr © COM9 - C X
// Define os n
int pino Trig
int pino Echo Distância: 7cm
Distancia: rom
// Especifica Distância: 7cm
Ultrasonic Sen Distância: 7cm
// Marijuni m Distância: 7cm
// vallevel upistância: 7cm
Distância: 7cm 9600 velocidade
Void setun() / Distância: 7cm
// Iniaia
Serial begin Distância: 7cm
Distância: 7cm
Distância: 7cm
void loop() (Distância: 7cm
// Realiza a Distância: 7cm
distancia =
// Imprime n 🗹 Auto-rolagem 🗌 Show timestamp Nova-linha 🤝 9600 velocidade 🗸 Deleta a saida
Serial.print(Distancia;);
Serial.print (distancia);
Serial.println("cm");
delay(500);
3
) sketch usa 2728 bytes (8%) de espaço de armazenamento para programas. O máximo são 32256 bytes.
Variáveis globais usam 217 bytes (10%) de memória dinâmica, deixando 1831 bytes para variáveis locais. O máximo são 2048 bytes.

Figura 6 - Monitor Serial do Software Arduino IDE

ii. Linguagem de programação por blocos

Na linguagem de programação por blocos, utilizaremos o software mBlock. Para conectar o mBlock ao Arduino, você deve clicar no ícone **Adicionar**, localizado no campo **Dispositivos**, e selecionar o Arduino, na biblioteca de dispositivos do mBlock, clicando, na sequência, no botão **OK**.

Nesta programação, utilizaremos variáveis que auxiliarão na estrutura do nosso programa (para recordar como criar uma variável, consulte a **Aula 05 - Softwares Arduino IDE e mBlock**).

Monte os blocos, arrastando e soltando, de acordo com a programação do sensor ultrassônico, como mostra a figura 7.

Figura 7 - Programação em blocos para funcionamento do sensor ultrassônico

Assim que os blocos estiverem montados, clique no botão **Conectar** para iniciar a comunicação entre o software mBlock com a placa Arduino Uno. Ao clicar sobre o botão **Conectar**, aparecerá um *Tooltip* solicitando a confirmação da conexão entre os dois dispositivos.

Uma vez realizada a conexão entre os dispositivos, será ativado, na interface do mBlock, o botão **Upload**, o qual, ao ser clicado, o software irá verificar se não há erros na estrutura do programa e, então, compilará para enviar o programa à placa Arduino.

Com a transferência do código para o dispositivo Arduino Uno, o sensor iniciará a medição da distância dos obstáculos à sua frente. Abra o Monitor Serial do Software IDE Arduino para acompanhar as medidas em tempo real.

Desafios:

i. Pesquise projetos com o sensor ultrassônico associado a outros componentes. Quais deles você já sabe utilizar?

ii. Com a pesquisa realizada, tente programar um projeto com o sensor ultrassônico e buzzer passivo.

iii. Agora, pense na programação que você fez nesta aula e como ela pode ser utilizada em projetos relacionados com a segurança.

i. O projeto não funcionar, se atente a alguns dos possíveis erros:

1. Verifique se a programação está adequada a cada porta digital.

2. Verifique se os jumpers estão nos pinos certos, se estão na mesma coluna dos terminais dos componentes, fazendo assim a conexão;

3. Verifique a velocidade de comunicação na janela do Monitor Serial, ela precisa estar com o mesmo valor que foi informado no código de programação, dentro do bloco Setup.

3. Feedback e Finalização (15min):

a. Confira, compartilhando seu projeto com os demais colegas, se o objetivo, do funcionamento do sensor de distância ultrassônico no projeto inicial, foi alcançado.

b. Reflita se as seguintes situações ocorreram:

i. Colaboração e Cooperação: você e os membros de sua equipe interagiram entre si, compartilhando ideias que promoveram a aprendizagem e o desenvolvimento deste projeto?

ii. Pensamento Crítico e Resolução de Problemas: você conseguiu identificar os problemas, analisar informações e tomar decisões de modo a contribuir para o projeto desenvolvido?

d. Reúna todos os componentes utilizados nesta aula e os organize novamente, junto aos demais, no kit de robótica.

Videotutorial

Com o intuito de auxiliar na montagem e na programação desta aula, apresentamos um videotutorial, disponível em:

https://rebrand.ly/a34robotica

Acesse, também, pelo QRCode:

DTI - DIRETORIA DE TECNOLOGIA E INOVAÇÃO