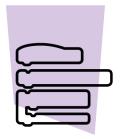

Diretoria de Tecnologia e Inovação

ROBÓTICA

Módulo 2



Módulo RF 433MHz - I AULA

AULA 32

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

Produção de Conteúdo

Adilson Carlos Batista Cleiton Rosa

Validação de Conteúdo

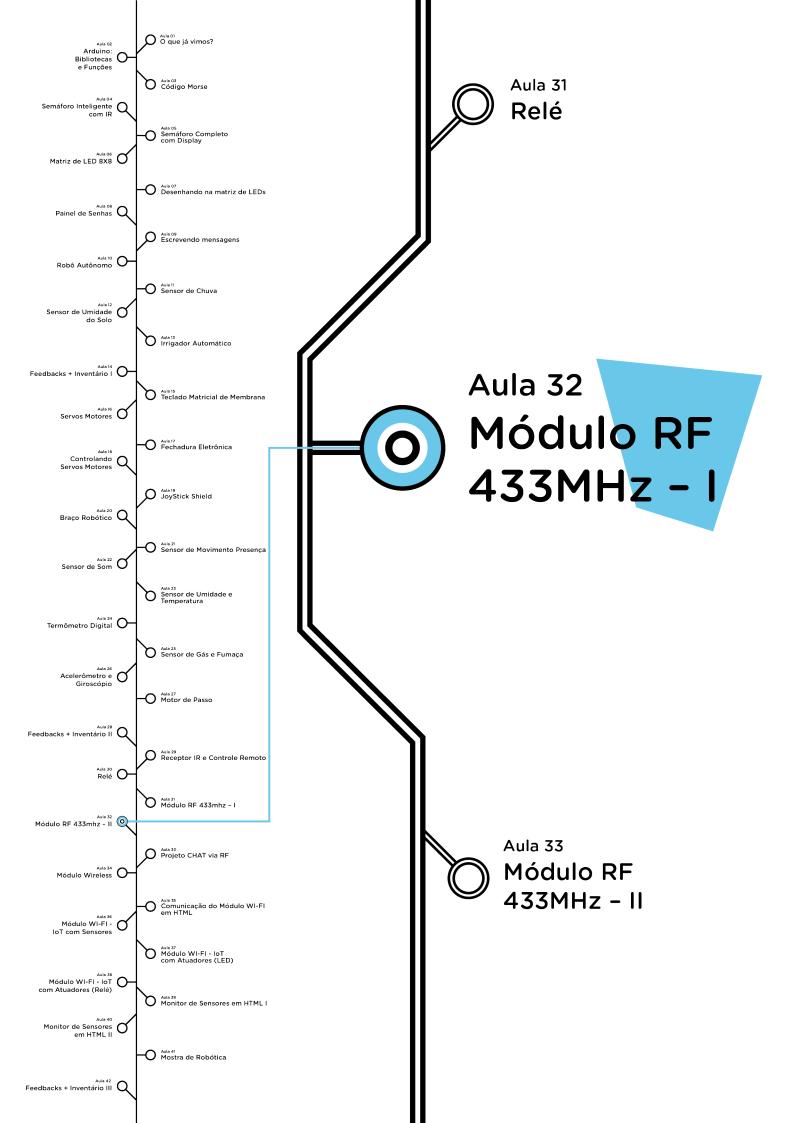
Cleiton Rosa

Revisão Textual

Adilson Carlos Batista

Projeto Gráfico e Diagramação

Edna do Rocio Becker


Ilustração

Jocelin Vianna

2021

Este trabalho está licenciado com uma Licença Creative Commons Atribuição NãoComercial - Compartilhalgual 4.0 Internacionall

Sumário

Introdução	2
Objetivos desta Aula	2
Competências Gerais Previstas na BNCC	
Habilidades do Século XXI a Serem Desenvolvidas	
Lista de Materiais	4
Roteiro da aula	5
1. Contextualização	5
2. Montagem e Programação	10
3. Feedback e Finalização	15
Videotutorial	16

MÓDULO RF 433MHz - I

Introdução

As ondas de rádio são um tipo de radiação eletromagnética que viaja na velocidade da luz no vácuo e muitos equipamentos fazem o uso destas ondas porque as informações são rapidamente projetadas e enviadas. Além das rádios, elas também aparecem em portões eletrônicos, radioamador, internet etc.

Você sabe como é possível transmitir informações por meio de ondas?

Na aula 32 e 33, teremos contato com o **Módulo RF433MHz** um transmissor de rádio frequência de baixa potência que utilizaremos para fazer uma transmissão, via programação, utilizando o Arduino. Nesta aula, abordaremos a parte teórica e, na seguinte, iremos trabalhar exclusivamente com a montagem e a programação.

Objetivos desta Aula

- Entender o funcionamento de radiocomunicadores;
- Conhecer o Módulo RF 433MHz presente no kit.

Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens - verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação.

Lista de Materiais

- O1 Placa Arduino Uno R3;
- O1 Cabo USB;
- 01 Placa Protoboard;
- 01 Módulo RF 433MHz Transmissor e Receptor;
- 01 Push Button;
- 05 Jumpers Macho-Macho;
- Notebook;
- Software Arduino IDE.

Roteiro da Aula

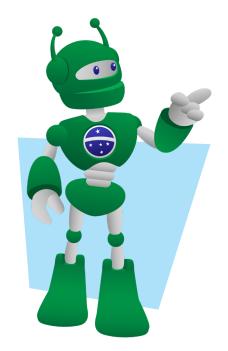
1. Contextualização (15min):

As radiofrequências ou ondas de rádio foram descobertas em 1864 pelo matemático escocês James Clerk Maxwell que ao atribuir propriedades ondulatórias da luz, com observações em partes elétricas e magnéticas, propôs equações descritivas das ondas de luz e de rádio como ondas eletromagnéticas que viajam no espaço. Entretanto, a descoberta foi apresentada ao público somente em 1886 por Heinrich Hertz que apresentou no formato de ondas de rádio, figura 1.

Figura 1 - Onda de rádio

Essas radiações eletromagnéticas apresentam um comprimento maior do que a radiação infravermelha e viajam na velocidade da luz no vácuo.

Depois dessas descobertas, muitos equipamentos passaram a utilizar as ondas de rádio para transmitir informações via sinais de comunicação - telégrafo, que usava o Código Morse, você trabalhou com esse código na **Aula 3 - Código Morse**.



32 MÓDULO RF 433MHz - I

O formato de transmissão de voz, como conhecemos hoje, ocorreu somente em 1921 e com ondas curtas em 1922. Agora, unindo transmissão de voz e música por ondas de rádio ocorreu em dezembro de 1906, em Massachusetts, nos Estados Unidos.

No Brasil, a rádio chegou em 1923 e teve sua primeira transmissão em uma estação de rádio instalada no Corcovado, no Rio de Janeiro, para comemorar o centenário da Independência e os ouvintes tiveram o privilégio de ouvir a ópera "O Guarani", de Carlos Gomes e o pronunciamento do presidente Epitácio Pessoa.

A partir de 1927 começou a era de Ouro do Rádio, com a possibilidade de tocar discos diretamente no microfone, a rádio ganhou muitos adeptos e um processo de massificação é inicializada, surgem as contratações de artistas, programas de auditórios, radionovelas, entre outros. A partir daí até a atualidade as rádios se tornaram sucesso em todo o país e hoje é consumido pela maioria da população.

"O hertz (símbolo Hz) é a unidade de medida derivada do SI para frequência, a qual expressa, em termos de ciclos por segundo, a frequência de um evento periódico, oscilações (vibrações) ou rotações por segundo (s-1 ou 1/s). Um dos seus principais usos é descrever ondas senoidais, como as de rádio ou sonoras. [...] Um hertz equivale a um ciclo por segundo. "Pela definição do Comitê Internacional de Pesos e Medidas (Comité International des Poids et Mesures)".

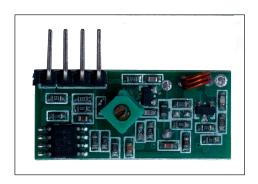
Adaptado de: https://pt.wikipedia.org/wiki/Hertz. Acesso em 16 abr. de 2021.

Para Saber Mais...

História do Rádio

https://pt.wikipedia.org/wiki/Portal:R%C3%A1dio

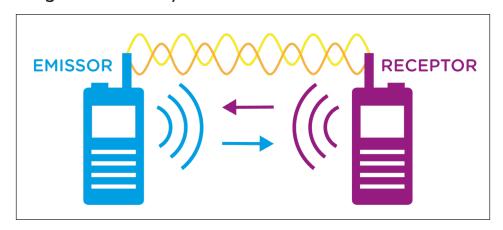
Nesta aula e nas próximas iremos trabalhar com ondas de rádio, mais especificamente, com os módulos - Transmissor e Receptor RF 433, que trabalha com frequência simples, com baixa potência, mas suficiente para compreendermos como funciona essa transmissão via onda. Iniciamos com os componentes - Transmissor e receptor, figura 2 e figura 3.


Figura 2 - Transmissor do módulo RF433

ESPECIFICAÇÕES		
Modelo	MX-FS-03V	
Alcance	20-200 metros (conforme voltagem)	
Tensão de operação	3,5-12v	
Modo de operação	AM (Modulação em Amplitude)	
Taxa de transferência	4KB/s	
Potência de transmissão	10mW	
Frequência de transmissão	433MHz	
Pinagem	Dados-VCC-GND (Esq>Dir.)	
Dimensões	19 x 19mm	

Figura 3 - Receptor do módulo RF433

ESPECIFICAÇÕES		
Tensão de operação	5v DC	
Corrente de operação	4mA	
Frequência de recepção	433MHz	
Sensibilidade	-105dB	
Dimensões	30 x 14 x 7 mm	


Uma curiosidade e que pode servir de referência para a nossa aula é o uso de radiocomunicadores.

Na década de 1980 e 1990 eles foram sucesso em todo o país e no mundo, os famosos Walkies Talkies, devido aos grandes filmes de ação envolvendo o exército. Esse equipamento usa dois pontos - um emissor e um receptor - que estando sincronizados na mesma frequência e dentro do limite de alcance das ondas, as pessoas podiam conversar. Para estabelecer a comunicação entre os interlocutores, eram utilizadas palavras de referência, assim, apertavam o botão "push-to-talk" (aperte para falar) e usava a palavra "câmbio" para dar início ao diálogo e ao final da conversa diziam "câmbio desligo", ambos precisavam respeitar o processo de apertar o botão para falar e tirar para ouvir.

MÓDULO RF 433MHz - I

Figura 4 - Ilustração sobre o funcionamento das ondas

A consequência do sucesso resultou que toda criança e adolescentes da época sonhavam em ter um equipamento para poder conversar com os amigos próximos. Mas o que muitos não sabem, é que esse aparelho eletrônico foi inventado na década de 1940 pelo canadense Al Grosse e utilizado, exclusivamente, nas forças militares como comunicador entre as tropas na Segunda Guerra Mundial e o modelo era o SCR - 300, figura 5.

Figura 5 - Walkie Talkie modelo SCR 300

https://commons.wikimedia.org/wiki/File:SCR-300_battery-powered_FM_voice_receiver_transmitter,_Motorola,_1940_-_National_Electronics_Museum_-_DSC00176.JPG

Para Saber Mais...

Walkie Talkies

https://pt.wikipedia.org/wiki/SCR-300

Hoje, esses equipamentos estão mais modernos, apesar de ser substituídos pelos celulares, eles continuam sendo utilizados por empresas de segurança e em organizações institucionais como as escolas.

Outro exemplo comum de uso das ondas de rádio são os controles de portões eletrônicos, presentes em quase todas a casas da atualidade.

Ao apertar o botão do controle para abrir o portão, esse emitirá um sinal codificado através do transmissor (módulo RF433) com o código que chega até o motor e, através de uma placa receptora (Receptor do módulo RF433), se as frequências estiverem sintonizadas, o receptor decodificará o sinal emitido, enviando pulsos elétricos a um relé que irá provocar o acionamento do motor para abrir o portão, figura 6.

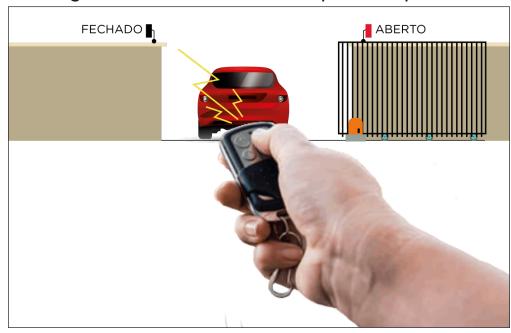


Figura 6- Botão sendo acionado para abrir portão.

Na próxima aula, em equipe, iremos para a montagem dos equipamentos e faremos a programação de um protótipo que simula o funcionamento de um portão eletrônico, usando as ondas de rádio por meio do Módulo RF 433MHz e o Arduino.

COORDENAÇÃO DE TECNOLOGIAS EDUCACIONAIS (CTE) DIRETORIA DE TECNOLOGIAS E INOVAÇÃO (DTI)

EQUIPE ROBÓTICA PARANÁ


Adilson Carlos Batista Cleiton Rosa Darice Alessandra Deckmann Zanardini Edna do Rocio Becker Marcelo Gasparin Michelle dos Santos Ricardo Hasper Simone Sinara de Souza

Os materiais, aulas e projetos da "Robótica Paraná", foram produzidos pela Coordenação de Tecnologias Educacionais (CTE), da Diretoria de Tecnologia e Inovação (DTI), da Secretaria de Estado da Educação e do Esporte do Paraná (Seed), com o objetivo de subsidiar as práticas docentes com os estudantes por meio da Robótica.

Este material foi produzido para uso didático-pedagógico exclusivo em sala de aula.

Este trabalho está licenciado com uma Licença Creative Commons – CC BY-NC-SA Atribuição - NãoComercial - Compartilhalgual 4.0

