

Diretoria de Tecnologia e Inovação

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

Produção de Conteúdo

Darice Alessandra Deckmann Zanardini

Validação de Conteúdo

Cleiton Rosa

Revisão Textual

Adilson Carlos Batista

Projeto Gráfico e Diagramação

Edna do Rocio Becker

2022

SUMÁRIO

Introdução	2
Objetivos desta Aula	2
Competências Gerais Previstas na BNCC	3
Habilidades do Século XXI a Serem Desenvolvidas	4
Lista de Materiais	4
Roteiro da aula	5
1. Contextualização	5
2. Conteúdo	6
3. Feedback e Finalização	15
Referências	16

No decorrer do nosso percurso até esta aula, você se deparou com projetos variados de introdução à Robótica, envolvendo autômatos, circuitos e programação!

Na Aula 7 - Circuito Elétrico I, você aprendeu o que é um circuito elétrico e elaborou o protótipo de um circuito elétrico com baixa voltagem em papel, utilizando LED, bateria de 3V e papel alumínio. Na Aula 8 - Circuito Elétrico II você avançou, desenvolvendo projetos em circuitos paralelos.

Como já vimos, circuitos elétricos são ligações de elementos por meio de fios condutores, permitindo a circulação da corrente elétrica. Como os projetos que você desenvolveu nas aulas anteriores e seguintes envolveram a utilização de LEDs conectados a uma bateria de corrente baixa, não foi necessário a utilização de resistores para controle da corrente.

Nesta aula, avançaremos mais na área da Robótica, conectando LEDs à placa de prototipagem Arduino e percebendo a importância da utilização de resistores nestas conexões.

• Compreender a importância da utilização de resistores nos projetos de LED em Arduino.

• Prototipar projetos de conexão de LED com o Arduino, via protoboard;

• Programar o acendimento de LEDs com Arduino.

Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens – verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital –, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação;
- Criatividade.

Lista de Materiais

- 01 Placa Arduino Uno R3;
- 01 Cabo USB;
- 01 Placa de Expansão (protoboard);
- 03 LEDs;
- 04 Jumpers macho-macho;
- 03 Resistores de 220 Ohms;
- 01 Notebook;
- Software mBlock.

1. Contextualização:

Nas aulas de circuito elétrico, você e seus colegas conectaram o LED diretamente a uma bateria 3V, respeitando as polaridades para a utilização correta do LED. Agora, chegou o momento de utilizarmos a placa de prototipagem eletrônica Arduino Uno R3, apresentada na **Aula 16 - Conhecendo o Kit de Robótica**, para conectarmos LEDs e iniciarmos nossos projetos em Robótica com Arduino. Nesta mesma aula, vocês experimentaram fazer a inserção de 3 LEDs e 3 Resistores na Protoboard. Faremos novamente esta conexão, agora com o objetivo de programar o acionamento destes LEDs utilizando o Arduino! Vamos lá?

Antes de seguirmos com nosso protótipo, é muito importante atentar que o LED opera com corrente baixa e o Arduino possibilita conexões com corrente mais elevada. Por este motivo, faremos a utilização de resistores no protótipo de modo a controlar a corrente destinada ao acionamento do LED.

2. Conteúdo:

Mas afinal, o que são resistores? Como vimos nas **Aulas 19 e 20 - Simulando Circuitos**, os resistores são utilizados para controlar a tensão presente em um circuito elétrico, criando uma "resistência" no fluxo da corrente destinado a fazer um componente eletrônico funcionar. Deste modo, a tensão aplicada ao componente fica adequada, sem risco de o componente queimar e não podermos mais utilizá-lo em nossos projetos.

Figura 1 - Representação do controle da corrente elétrica pela atuação de um resistor.

Fonte: Wikimedia Commons (adaptado)

No caso do nosso protótipo de ligação dos LEDs, a utilização de resistores é essencial! O LED possui uma corrente de 15mA e o Arduino emite 40mA, ou seja, uma corrente bem maior que a do LED, o que fará com que o LED se danifique por não aguentar uma corrente maior passando por ele. Além disso, o LED estará conectado ao 5V do Arduino. Para diminuir a quantidade de corrente que passará pelo circuito no qual o LED será conectado, vamos utilizar o resistor!

Para a montagem do nosso protótipo, utilizaremos Arduino, protoboard, jumpers macho-macho e LEDs. Retorne à **Aula 16 - Conhecendo o Kit de Robótica** para relembrar alguns detalhes destes componentes e dicas de como manuseá-los.

O LED, assim como outros componentes que conheceremos no decorrer das próximas aulas, precisa, ao ser inserido em um circuito elétrico, da utilização de um resistor para limitar o fluxo da corrente que está passando pelo circuito elétrico, de modo a aproveitarmos ao máximo do brilho do LED, sem danos, o que impossibilitaria sua utilização neste e outros projetos!

Como a porta digital do Arduino, à qual ligaremos o LED, opera com uma corrente de 40mA e saída 5V (valor mais alto que o das baterias de 3V das aulas de circuito de papel e circuito elétrico), utilizaremos o resistor de 220 Ω (Ohms), que acaba sendo o padrão para a conexão de LEDs no Arduino. Para localizar o LED de 220 Ω no Kit de Robótica, confira suas linhas coloridas.

Figura 2 – Resistor 220 Ω

Fonte: Wikimedia Commons

As linhas coloridas que auxiliam na identificação do resistor são definidas por um padrão internacional de marcação no próprio resistor. Esse padrão é descrito na tabela presente na figura 3, a qual auxilia na leitura (identificação) do resistor a ser utilizado:

Figura 3 - Tabela para leitura das cores dos resistores

Fonte: Banco de imagens SEED / DTI / CTE, 2022

No caso do resistor de 220 $\Omega_{\!\!\!,}$ vamos "ler" suas cores da seguinte maneira:

Fonte: Banco de imagens SEED / DTI / CTE, 2022

No resistor de 220 Ω ilustrado na figura 4, a primeira e a segunda linha indicam os algarismos; a terceira linha, o multiplicador, ou seja, por quanto você precisa multiplicar seus algarismos. Portanto, no exemplo acima temos 22 x 10 Ω , o que nos dá o valor de 220 Ω . A quarta faixa nos indica a tolerância – então o valor deste resistor pode variar de 209 Ω a 231 Ω .

No início da realização de projetos com resistores, pode ser difícil identificar apenas por cálculos quais são os resistores mais adequados aos projetos. Por isso, a cada aula indicaremos qual resistor será necessário para cada componente. Futuramente, você aprenderá como calcular os resistores a partir da Lei de Ohm, a qual estabelece a relação entre tensão, resistência e intensidade. Enquanto isso, siga as aulas utilizando os resistores conforme a indicação de suas cores na tabela da figura 3.

Vamos à montagem do protótipo? Conforme indicado na figura 5, em uma das áreas da protoboard encaixe o LED e, no seu terminal positivo (terminal mais longo), conecte o resistor. No terminal negativo do LED (terminal mais curto), conecte 1 jumper até a porta GND do Arduino e, no terminal da direita do resistor, conecte outro jumper até a porta digital 7 do Arduino, conforme indicado na figura 5. Lembre-se que o LED é um diodo emissor de luz e conduz eletricidade em um único sentido. Então, ao finalizarmos as conexões, estaremos "fechando o circuito".

Figura 5 - Conectando um LED e um resistor à Protoboard.

Fonte: Fritzing

Agora, para programar o acionamento do LED na Protoboard, utilizaremos o software mBlock, o qual possui blocos de funções prontas que representam comandos de programação e você conheceu na **Aula 24 - Software mBlock** e **Aula 25 - Criando animação no mBlock**.

Caso a placa Arduino Uno R3 não esteja aparecendo no mBlock, para conectar o mBlock ao Arduino, retorne à **Aula 24 - Software mBlock** para conferir como definir o dispositivo Arduino. Este procedimento de conexão do Arduino Uno R3 ao mBlock habilita a exibição dos blocos de programação, essencial para darmos sequência ao nosso projeto.

Para seguir com a programação do LED, monte os blocos destinados à programação do Arduino, arrastando e soltando conforme a figura 6, para indicar a porta digital do Arduino à qual o LED está conectado e o tempo de acionamento deste LED.

Figura 6 - Programando no mBlock a conexão de um LED e um resistor

Fonte: mBlock

A chave **<repetir para sempre>** indica que nossa programação ficará em looping, ou seja, repetindo a ação de ligar e desligar o LED enquanto o Arduino estiver conectado ao computador ou uma fonte de energia.

O bloco **<"definir saída do pino digital 7 como alto">** define qual porta digital está sendo utilizada e que o LED está energizado. Na montagem do projeto, conectamos o terminal positivo do LED à porta digital 7 do Arduino.

O bloco **<esperar 1 segundo>**, encaixado logo abaixo do bloco que mostra a saída do pino digital como "alto", indica o tempo que o LED fica conectado e o bloco **<"definir saída do pino digital 7 como baixo">** desenergiza o pino 7, deixando o LED desligado por um segundo também, que é o tempo indicado no bloco "esperar" encaixado por último.

Assim que os blocos deste primeiro projeto estiverem montados, clique no botão **Conectar** para iniciar a comunicação entre o software mBlock com a placa de Arduino Uno R3. Ao clicar sobre o botão **Conectar**, confirme a conexão entre os dois dispositivos, conforme figura 7.

Figura 7 - Conexão entre Arduino Uno R3 e mBlock

Fonte: mBlock

Uma vez realizada a conexão entre os dispositivos, será ativado, na interface do mBlock, o botão **Upload**, conforme figura 8. Ao clicar neste botão, o software irá verificar se não há erros na estrutura do programa e, então, fará a compilação do programa para envio à placa Arduino.

Figura 8 - Upload da programação do mBlock ao Arduino Uno

Fonte: mBlock

Com a transferência do código para o dispositivo Arduino Uno, o LED piscará conforme a programação definida pela organização dos blocos neste primeiro projeto da aula.

Agora, vamos conectar três LEDs à protoboard, tendo atenção para conectar também um resistor a cada LED.

Na protoboard, encaixe os 3 LEDs da seguinte maneira: terminais negativos (terminais mais curtos) na linha lateral azul da protoboard, para o circuito passar por entre eles, e terminais positivos nas colunas verticais centrais da protoboard. Agora, conecte 3 resistores, um pra cada terminal positivo de cada LED, até as colunas verticais inferiores da protoboard. Conecte 3 jumpers nos terminais inferiores de cada resistor, conectando-os às portas digitais 8, 9 e 10 do Arduino. Por fim, conecte 1 jumper entre a porta GND do Arduino e a linha lateral azul da protoboard, onde estão conectados os terminais negativos dos LEDs, conforme indicado na figura 9.

Fonte: Fritzing

A programação deste segundo projeto é similar à programação que realizamos no primeiro projeto da aula. A diferença é que como estamos conectando três LEDs ao Arduino, utilizamos três portas digitais, as quais deverão ser informadas na programação do mBlock, conforme figura 10.

Figura 10 - Programando no mBlock a conexão de três LEDs e três resistores

Fonte: mBlock

Assim que os blocos deste segundo projeto estiverem montados, repita o procedimento para comunicação entre o mBlock e o Arduino e upload da programação, o qual você fez no primeiro projeto desta aula, e pronto! Seu projeto de um resistor para cada LED estará concluído e com a transferência do código para o dispositivo Arduino Uno, os LEDs piscarão conforme a programação definida pela organização dos blocos neste projeto.

3. Feedback e Finalização:

a. Compartilhe com seus colegas o seu projeto e a programação, conferindo se está tudo funcionando conforme o planejado;

b. Analise e troque informações com os colegas sobre como você foi a experiência de montar um projeto com Arduino e realizar sua programação;

c. Reveja se você entendeu como trabalhar com portas digitais e resistores para o acionamento de LEDs;

d. Reflita se as seguintes situações ocorreram:

i. Você e os seus colegas trocaram ideias no momento da montagem e programação do LED?

ii. Você teve algum problema ao fazer a programação? Qual? Como você resolveu?

Desafio:

Que tal personalizar a programação no mBlock, definindo outros tempos de acionamento do LED?

E se?

... não localizar o Arduino no mBlock, confira com seu professor se a placa Arduino Uno R3 foi instalada no mBlock.

... o projeto não funcionar, verifique se a montagem do projeto está de acordo com o indicado nesta aula.

... o projeto não funcionar, verifique também se a programação está adequada à montagem.

BRASIL. Ministério da Educação. **Base Nacional Comum Curricular**. Brasília, 2018. Disponível em: <u>http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_</u> <u>versaofinal_site.pdf</u>. Acesso em: 22 jul. 2022.

ENSINANDO Elétrica. **Conceitos básicos da eletricidade**. Disponível em: <u>https://</u> <u>ensinandoeletrica.blogspot.com/2015/07/conceitos-basico-da-eletricidade.html</u>. Acesso em: 03 ago. 2022

MAKEBLOCK. mBlock. **Download mBlock**. Disponível em: <u>https://mblock.makeblock.</u> <u>com/en-us/download/</u>. Acesso em: 03 ago. 2022.

MAKEBLOCK. MBlock. **Make with Code**. Disponível em: <u>https://mblock.makeblock.com/</u> <u>en-us/</u>. Acesso em: 03 ago. 2022.

VERTULO, Rodrigo Cesar. **Arduino: 3 coisas que você nunca deve fazer com o seu**. Disponível em: <<u>http://labdeeletronica.com.br/arduino-3-coisas-que-voce-nunca-deve-fazer-com-o-seu/</u>>. Acessado em: 10/08/2022.

DIRETORIA DE TECNOLOGIAS E INOVAÇÃO (DTI) COORDENAÇÃO DE TECNOLOGIAS EDUCACIONAIS (CTE)

EQUIPE ROBÓTICA PARANÁ

Adilson Carlos Batista Cleiton Rosa Darice Alessandra Deckmann Zanardini Edna do Rocio Becker Marcelo Gasparin Michelle dos Santos Roberto Carlos Rodrigues Simone Sinara de Souza

Os materiais, aulas e projetos da "Robótica Paraná", foram produzidos pela Coordenação de Tecnologias Educacionais (CTE), da Diretoria de Tecnologia e Inovação (DTI), da Secretaria de Estado da Educação e do Esporte do Paraná (Seed), com o objetivo de subsidiar as práticas docentes com os estudantes por meio da Robótica.

Este material foi produzido para uso didático-pedagógico exclusivo em sala de aula.

Este trabalho está licenciado com uma Licença Creative Commons – CC BY-NC-SA <u>Atribuição - NãoComercial - Compartilhalgual 4.0</u>

Diretoria de Tecnologia e Inovação

