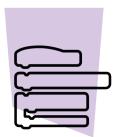

Diretoria de Tecnologia e Inovação

ROBÓTICA

Módulo 1



Display LCD 16×2 AULA

AULA 36

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

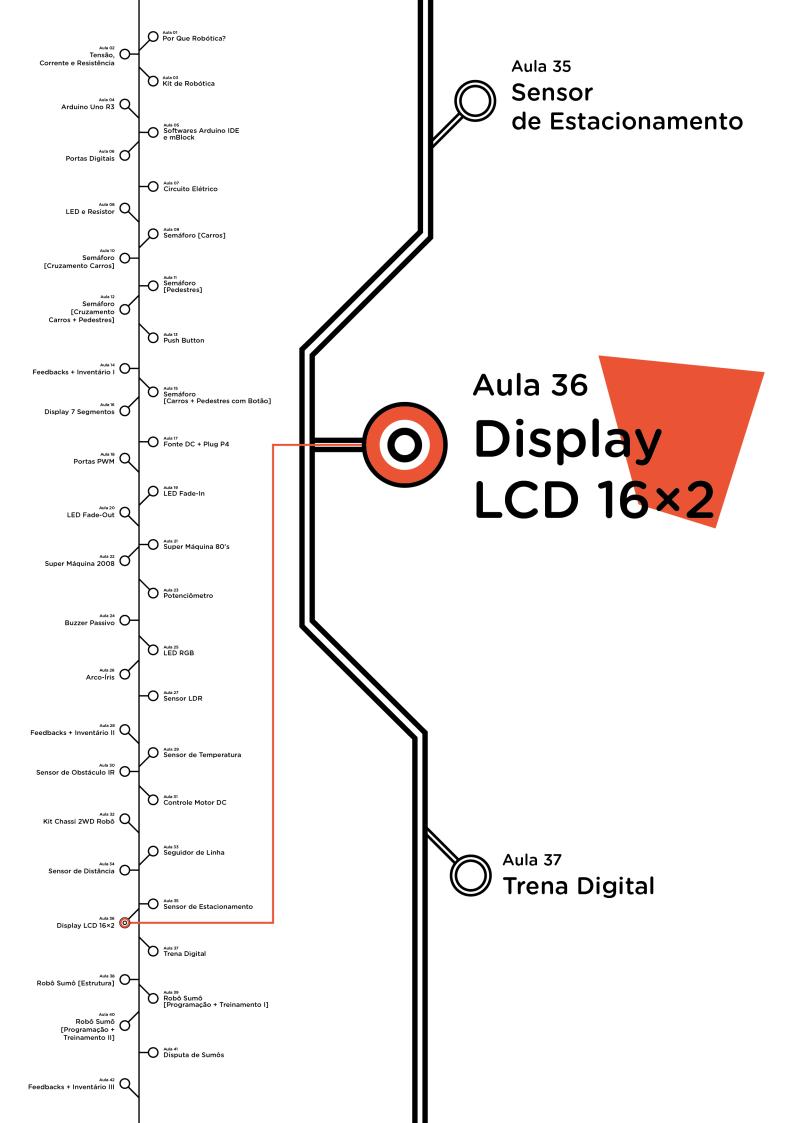
Marcelo Gasparin

Produção de Conteúdo

Andrea da Silva Castagini Padilha Cleiton Rosa Simone Sinara de Souza

Revisão Textual

Adilson Carlos Batista


Projeto Gráfico e Diagramação

Edna do Rocio Becker

2021

Este trabalho está licenciado com uma Licença Creative Commons Atribuição NãoComercial - Compartilhalgual 4.0 Internacional

Sumário

Introdução	2
Objetivos desta Aula	2
Competências Gerais Previstas na BNCC	3
Habilidades do Século XXI a Serem Desenvolvidas	4
Lista de Materiais	4
Roteiro da Aula	5
1. Contextualização	5
2. Montagem e Programação	6
3. Feedback e Finalização	13
Videotutorial	15

36 Display LCD 16X2

Introdução

O Display LCD, do inglês *Liquid Crystal Display*, ou simplesmente visor de cristal líquido, é um mostrador de caracteres alfanuméricos muito utilizados para comunicação visual e encontrados em diversos aparelhos domésticos, em algumas telas de dispositivos móveis, despertadores e calculadoras digitais, entre outros.

Nesta aula, conheceremos o funcionamento do modelo LCD 16X2 e sua aplicabilidade em projetos voltados à robótica.

Objetivos desta Aula

- Conhecer o funcionamento do Display LCD 16X2;
- Rever o funcionamento do Potenciômetro;
- Programar a escrita no Display LCD 16X2.

Robótica

Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens - verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.


Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico:
- Afinidade digital:
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação.

Lista de Materiais

- 01 Placa Protoboard;
- 01 Placa Arduino Uno R3;
- 01 Cabo USB;
- 14 Jumpers Macho-Macho;
- 01 Display LCD 16X2;
- 01 Potenciômetro linear;
- 01 Notebook:
- Software mBlock ou Arduino IDE.

Roteiro da Aula

1. Contextualização (15min):

Na **Aula 16 - Display de 7 Segmentos**, estudamos um modelo de display que utiliza LEDs para formar números decimais, símbolos e/ou caracteres que possibilitam a comunicação visual.

Nesta aula, conheceremos o Display LCD 16X2, um modelo de dispositivo gráfico que apresenta caracteres alfanuméricos, dispostos em 16 colunas e 2 linhas, e exibidos, geralmente, com fonte na cor branca e luz de fundo em tonalidade escura para facilitar a leitura da informação. Esse display é composto, ainda, por 16 pinos com diferentes funções que permitem seu controle (figura 1).

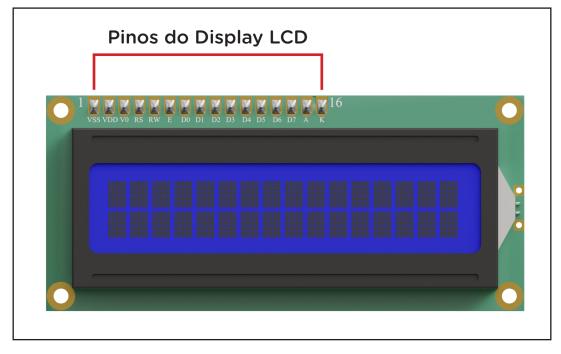
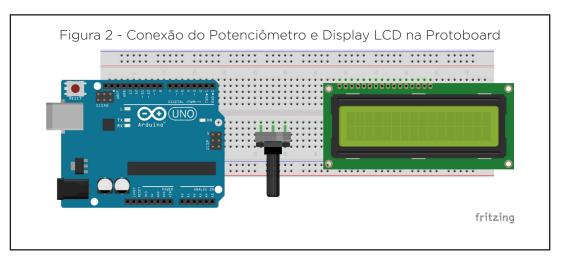


Figura 1 - Display LCD 16x2

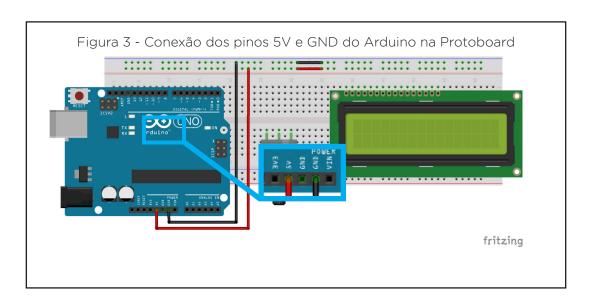
Dentre as funções dos pinos presentes no display, podemos destacar:

- **Pino RS**, ou seleção de registro controla a memória do LCD, definindo se os bits a serem enviados serão configurações ou dados.
- Pino RW permite selecionar os modos de leitura ou de gravação.

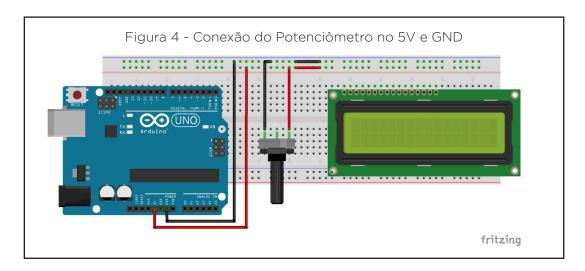


- **Pino VO** responsável pelo ajuste do contraste da tela. Em circuito elétrico, geralmente, este pino é ligado a um potenciômetro.
- **Pinos VSS E VDD** realizam a alimentação do display, correspondendo, respectivamente, GND e 5V.
- Pinos de DO a D7 indica a quantidade de bits, ou dados, a ser escrito no LCD ou lido dele.
- Pinos A e K Alimentam o LED interno de iluminação do display.

Agora que conhecemos a estrutura do Display LCD 16X2, vamos montar um protótipo para entender seu funcionamento.

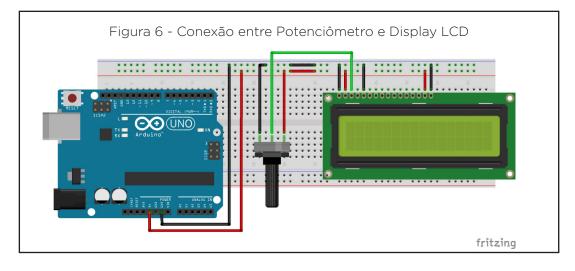

2. Montagem e programação (60min):

Vamos começar com a montagem dos componentes eletrônicos. Encaixe, na Protoboard, o Potenciômetro e o Display LCD, conforme indicado na figura 2.



Utilize 2 jumpers Macho-Macho para conectar os pinos 5V e GND da placa Arduino no barramento superior da Protoboard (linhas azul e vermelha) e, outros 2 jumpers, para interligar esses barramentos, como apresentado na figura 3.




A seguir, conecte, através de 2 jumpers, os terminais extremos do Potenciômetro no barramento superior da Protoboard, conforme indicado na figura 4.

Com o auxílio de 5 jumpers, conecte os pinos (VSS, VDD, RW, A e K) do Display LCD ao barramento superior da Protoboard, respeitando as linhas de 5V e GND, como mostra a figura 5.

Utilize 1 jumper para interligar o pino central do Potenciômetro ao pino VO do Display LCD, conforme indicado na figura 6.

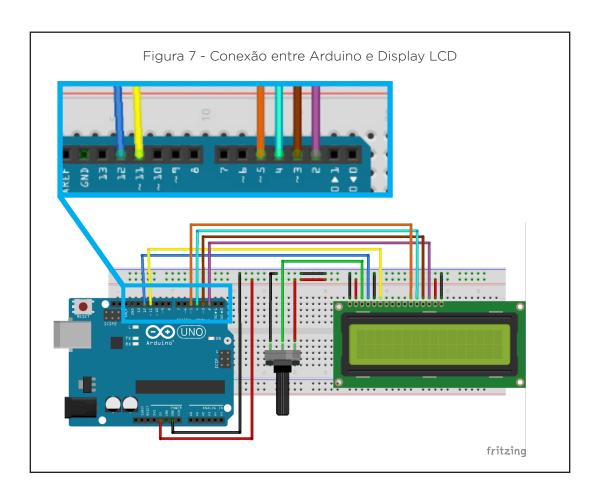

Conecte, através de jumpers, os demais pinos do Display LCD, respeitando a sequência apresentada na tabela 1 e, de acordo com a figura 7.

Tabela 1 - Conexão entre o Display LCD e Arduino

Pinos - Display	RS	E	D4	D5	D6	D7
Pinos - Arduino	12	11	5	4	3	2

Robótica

Agora, vamos programar!

Com os componentes eletrônicos montados, vamos programar, por codificação e por blocos, o nosso protótipo.

i. Linguagem de programação por código

Para esta programação, utilizaremos a biblioteca *Liquid Crystal* já presente no Software Arduino IDE.

Conecte a placa Arduino ao computador, através de um cabo USB, para que ocorra a comunicação entre a placa microcontroladora e o software Arduino IDE.

No software IDE, escreva ou copie e cole o código-fonte de programação, conforme apresentado no quadro 1.

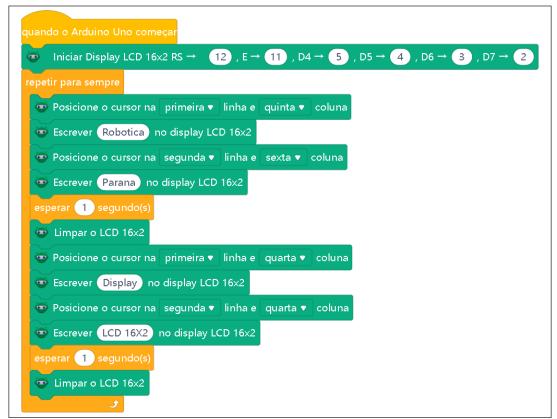

```
Quadro 1 - Código-fonte da programação na linguagem do Arduino (Wiring)
/* Programa: Teste de Display LCD 16X2; */
/* Carrega a biblioteca de controle do LCD; */
#include <LiquidCrystal.h>
/* Define os pinos que serão utilizados para ligação do display; */
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
void setup()
  /* Define o número de colunas (16) e linhas (2) do LCD; */
  lcd.begin(16, 2);
void loop()
  /* Posiciona o cursor na coluna 4, linha 0; */
  lcd.setCursor(4, 0);
  /* Envia o texto entre aspas para o LCD; */
  lcd.print("Robotica");
  /* Posiciona o cursor na coluna 5, linha 1; */
  lcd.setCursor(5, 1);
  /* Envia o texto entre aspas para o LCD; */
  lcd.print("Parana");
 delay(2000);
  lcd.clear();
  /* Posiciona o cursor na coluna 3, linha 0; */
 lcd.setCursor(3, 0);
  /* Envia o texto entre aspas para o LCD; */
 lcd.print("Display");
  /* Posiciona o cursor na coluna 3, linha 1; */
 lcd.setCursor(3, 1);
  /* Envia o texto entre aspas para o LCD; */
 lcd.print("LCD 16X2");
  delay(2000);
  lcd.clear();
```

Com o código-fonte inserido no Arduino IDE, compile o programa pressionando o botão **Verify** (botão com sinal de tique) para verificar se não há erros de sintaxe. Estando o código correto, o próximo passo é realizar a transferência do programa para o Arduino. Para tal, pressione o botão **Upload** (botão com uma seta apontando para a direita).

Com a transferência do código para o Arduino Uno, o Display LCD mostrará as palavras programadas, alternando entre "Robotica Parana" e "Display LCD 16x2".

ii. Linguagem de programação por blocos

Outra forma de programar o Display LCD 16X2 é por meio da linguagem de programação que utiliza blocos de funções prontas, os quais representam comandos de programação. Vamos utilizar o software mBlock.


Para conectar o mBlock ao Arduino, você deve clicar no ícone **Adicionar**, localizado no campo **Dispositivos**, e selecionar o Arduino, na biblioteca de dispositivos do mBlock, clicando, na sequência, no botão **OK**.

Uma vez selecionado, o Arduino Uno é visualizado no campo **Dispositivos** do mBlock e já é possível iniciar a programação por blocos.

Nesta programação, utilizaremos a extensão "RP - LCD 16X2". Para recordar como instalar uma extensão no mBlock, consulte a Aula 05 - Softwares Arduino IDE e mBlock.

Monte os blocos, arrastando e soltando, de acordo com a programação do projeto, como mostra a figura 8.

Figura 8 - Programação em blocos para leitura no Display LCD 16x2

36

Assim que os blocos estiverem montados, clique no botão **Conectar** para iniciar a comunicação entre o software mBlock com a placa de Arduino Uno. Ao clicar sobre o botão **Conectar**, aparecerá um *Tooltip* solicitando a confirmação da conexão entre os dois dispositivos.

Uma vez realizada a conexão entre os dispositivos, será ativado, na interface do mBlock, o botão **Upload**, o qual, ao ser clicado, o software irá verificar se não há erros na estrutura do programa e, então, compilará para enviar o programa à placa Arduino.

Com a transferência do código para o dispositivo Arduino Uno, o Display LCD mostrará as palavras programadas: Robotica Parana.

Desafios:

i. Que tal criar um crachá eletrônico? Faça as alterações adequadas na programação e personalize seu crachá eletrônico com o Display LCD 16x2.

Vamos adicionar um controle a este projeto? Acrescente dois botões (*Push Button*) e programe o Display LCD 16X2 para mostrar um caractere ou palavra, e ao pressionar um dos botões, role para a direita, pressionando o outro botão, role para a esquerda.

E se...?

- i. O projeto não funcionar, se atente a alguns dos possíveis erros:
 - **1.** Verifique se os jumpers estão nos pinos certos, se estão na mesma coluna dos terminais dos componentes, fazendo assim a conexão;
 - **2.** Verifique se os jumpers estão ligados aos pinos corretos no Arduino;
 - **3.** Verifique se a programação está adequada a cada porta digital.

3. Feedback e Finalização (15min):

- **a.** Confira, compartilhando seu projeto com os demais colegas, se o objetivo foi alcançado.
- **b.** Analise seu projeto desenvolvido, de modo a atender aos requisitos para funcionamento do Display LCD 16X2. .
 - **c.** Reflita se as seguintes situações ocorreram:
 - i. Colaboração e Cooperação: você e os membros de sua equipe interagiram entre si, compartilhando ideias que promoveram a aprendizagem e o desenvolvimento deste projeto?
 - **ii.** Pensamento Crítico e Resolução de Problemas: você conseguiu identificar os problemas, analisar informações e tomar decisões de modo a contribuir para o projeto desenvolvido?
- **d.** Reúna todos os componentes utilizados nesta aula e os organize novamente, junto aos demais, no kit de robótica.

36

Com o intuito de auxiliar na montagem e na programação desta aula, apresentamos um videotutorial, disponível em:

https://rebrand.ly/a36robotica

Acesse, também, pelo QRCode:

